Control of the Streptomyces Subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus.
نویسندگان
چکیده
AdpA in the A-factor regulatory cascade in Streptomyces griseus activates a number of genes required for secondary metabolism and morphological differentiation, forming an AdpA regulon. The Streptomyces subtilisin inhibitor (SSI) gene, sgiA, in S. griseus was transcribed in response to AdpA, showing that sgiA is a member of the AdpA regulon. AdpA bound a single site upstream of the sgiA promoter at approximately position -70 with respect to its transcriptional start point. Mutational analysis of the AdpA-binding site showed that the AdpA-binding site was essential for transcriptional activation. Mutants in which sgiA was disrupted had higher trypsin, chymotrypsin, metalloendopeptidase, and total protease activities than the wild-type strain, which showed that SgiA modulated the activities of these extracellularly produced proteases. Because a number of genes encoding chymotrypsins, trypsins, and metalloendopeptidases, most of which are SSI-sensitive proteases, are also under the control of AdpA, the A-factor regulatory cascade was thought to play a crucial role in modulating the extracellular protease activities by triggering simultaneous production of the proteases and their inhibitor at a specific timing during growth. Mutants in which sgiA was disrupted grew normally and formed aerial hyphae and spores with the same time course as the wild-type strain. However, exogenous addition of purified SgiA to substrate mycelium grown on agar medium resulted in a delay in aerial mycelium formation, indicating that SgiA is involved in aerial hypha formation in conjunction with proteases.
منابع مشابه
Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus.
AdpA is the key transcriptional activator for a number of genes of various functions in the A-factor regulatory cascade in Streptomyces griseus, forming an AdpA regulon. Trypsin-like activity was detected at a late stage of growth in the wild-type strain but not in an A-factor-deficient mutant. Consistent with these observations, two trypsin genes, sprT and sprU, in S. griseus were found to be ...
متن کاملA single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus.
In the model of the A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) regulatory cascade in Streptomyces griseus, A-factor binds ArpA, the A-factor receptor protein, that has bound to the adpA promoter and dissociates it from the DNA, thus inducing the transcription of adpA. AdpA switches on the transcription of a number of genes required for secondary metabolism and morphological ...
متن کاملTranscriptional control by A-factor of strR, the pathway-specific transcriptional activator for streptomycin biosynthesis in Streptomyces griseus.
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) triggers streptomycin production by inducing the transcription of strR, encoding the pathway-specific transcriptional activator, through signal transduction in the A-factor regulatory cascade in Streptomyces griseus. AdpA, one of the key transcriptional activators in the cascade, bound two upstream activation sites, approximately at...
متن کاملA microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus.
The Gram-positive, soil-inhabiting, filamentous bacterial genus Streptomyces employs gamma-butyrolactones as chemical signalling molecules or microbial hormones, together with their specific receptors, to regulate morphological and/or physiological differentiation. The A-factor regulatory cascade in streptomycin-producing Streptomyces griseus commences aerial mycelium formation and production o...
متن کاملThree chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus.
AdpA is a key transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus, activating a number of genes required for secondary metabolism and morphological differentiation. Of the five chymotrypsin-type serine protease genes, sprA, sprB, and sprD were transcribed in response to AdpA, showing that these protease genes are members of the AdpA regulon. These proteases were...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 188 17 شماره
صفحات -
تاریخ انتشار 2006